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We show a construction of the set of all pure states of any physical system. This 
set appears to be compact in a physically meaningful topology. The approach 
is based on quantum logic notions, but is "constructive" in the sense that we 
assume that our knowledge about a system increases when we perform more 
and more experiments and that the set of states is not given to us from the very 
beginning but is determined by our knowledge at any stage of investigations. 
The set of all states is obtained when all possible experiments are performed, 
which may require an infinite number of experiments. In such a situation the 
set of all states exists only on an abstract, purely theoretical level but nevertheless 
by our construction it is still compact. 

1. I N T R O D U C T I O N  

In a previous paper  (Posiewnik,  1985a) one of us presented a construc- 
t ion of a set of  physical  states based on the Scott (Scott, 1982) in format ion  
systems theory. Sets of pure states ob ta ined  by this const ruct ion appeared 

to be compact  in some physically natura l  topology,  which in tu rn  impl ied 
that the set of  all (pure and  mixed) states was a compact  convex subset  of 

a locally convex Hausdorff  real topological  vector space (Posiewnik,  1985b). 
Such an embedd ing  of the set of all physical  states was the ul t imate goal 
and  the cause of all efforts since once we have it we may make the full use 

of the Choque t  theory (Phelps,  1966; Alfsen, 1971; Asimow and  Ellis, 1980). 
Part icularly,  we may describe decomposi t ions  of a mixed state into its pure 

componen t s  us ing  integrals with respect to measures  concentra ted on the 
set of  pure  states (Pykacz, 1983; Posiewnik and  Pykacz, 1981). In  the present  
paper  we propose  another  const ruct ion of the set of  all pure states of a 
physical  system which yields the same results. The present  approach  is more 
specific since it is based on the no t ion  of lattice of properties which is a 
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particular example of  an information system (Posiewnik, 1985a) but is 
"constructive," i.e., we do not assume that the whole set of  states is given 
from the very beginning but we construct it step by step by making more 
and more experiments on the physical system. In this point our research 
strategy agrees in some sense with that of Finkelstein (1969, 1972), yon 
Weizs~icker (1975, 1977, 1979), Bastin (1976), etc. 

We adopt  to our description the quantum logic approach in the form 
advocated mostly by Piron (1976) and Aerts (1981, 1982). Since a detailed 
exposition of  this approach can be found in the papers mentioned above, 
we remind the reader here only of some basic notions which are necessary 
in our construction. According to Piron and Aerts one gains information 
about a physical system by asking "questions," i.e., by performing experi- 
ments whose outcomes can be interpreted in terms of  "yes" or "no ."  A 
question is said to be " t rue"  iff, when one would decide to ask it, the answer 
"yes" would come out with certainty. We say that the question a is stronger 
than the question/3 and denote it by a </3 if whenever a is true then also 
/3 is true. This relation is a preorder relation since, although it is reflexive 
and transitive, generally a </3 and fl < a does not imply a =/3. Nevertheless 
such questions are "equivalent" in the sense that by asking them we study 
features of  physical systems which always appear together. The relation 
defined on the set of  questions by a formula 

a ~/3 iff a </3 and/3 < a 

is an equivalence relation and its classes of equivalence are called 
"properties." If  a question a belongs to the equivalence class a, we say 
that a tests the property a. The preorder relation on the set of  questions 
defines in a natural way a partial order relation on the set of properties: 
Let a and b be properties; then 

a < b i f f  ot < /3 f o r  all a ~ a a n d f l ~ b  

We denote by I the "trivial property," i.e., the equivalence class of  
questions which are always true and by 0 the equivalence class of  questions 
which are never true. The set 5r of  all properties is a lattice with I as the 
top and 0 as the bottom element. 

The meet of the family of properties {ai} is a p r o p e r t y / ~  ai obtained 
in the following way: we take one question al from every equivalence class 
at and we construct a "product  question" l~i a~ by choosing as we want, at 
random or not, one of  ai and according to [L a~ the answer obtained for 
the chosen question. The p r o p e r t y / ~  ai is a property tested by ]-[~ o~, i.e., 
it is the equivalence class of Hi a~. The join of the family of  properties {ai} 
is a property V, ai defined by the following formula: 

V a i  = /~ b, b ~ f  
i aj<b 
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The property a of a physical system is called "actual" iff any question 
which tests a, i.e., which belongs to a, is true. A state of a physical system 
is defined as a set of all actual properties or, if we want to study a physical 
system using only questions, as a set of all questions which are true. A state 
of a system defined in such a way is a pure state in the sense of Dirac 
(Dirac, 1958) since by specifying it we obtain maximal information about 
the system. A state of a system can change in time because when time 
elapses properties which were not actual may become actual and vice versa. 
By the set of all (pure) states of a physical system we mean the set of all 
states which can be achieved by a system under all kinds of external 
conditions possible to apply. 

2. THE CONSTRUCTION 

A reader of the majority of papers on axiomatical foundations of 
physical theories usually gets an impression that the whole knowledge about 
all mathematical structures which describe a physical system is either given 
to him from the very beginning or that it is at least possible to obtain it in 
full details. We do not want to discuss here the philosophical question if 
these mathematical structures exist on their own--al though we are eager to 
agree that they do- -bu t  we want to check carefully the way in which we 
gain knowledge about them. The Piron-Aerts quantum logic approach, 
which deals with "yes-no" experiments and in which the notion of a property 
and a state emerges from this more primitive notion of question, is par- 
ticularly suited for this task. Since we do not assume that when we start to 
study a physical system we have already any knowledge about it, it should 
be possible to repeat experiments many times using sequences of equally 
prepared copies of a system to establish the preorder relation between 
questions. This possibility of obtaining sufficiently many copies of a system 
is necessary also for the reason that we cannot exclude the situation that 
some experiments could destroy the system. 

Let us now check carefully what we must do to build up a lattice of 
properties and recognize which sets of properties represent states of a given 
physical system. We ask questions, i.e., we perform "yes-no" experiments; 
then, guided by results of experiments, we introduce preorder relation on 
questions, construct product  questions, and group questions into 
equivalence classes to obtain properties (Finkelstein, 1979). Next we intro- 
duce partial order relation on properties and finally we check which sets 
of properties consist of properties which for some sequences of equally 
prepared copies of the system are actual together so they represent states 
of the system. But the natural way to study a physical system is not to ask 
all possible questions at once (which is usually even impossible) but rather 
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to ask questions one by one and build up partial models at every stage of 
investigations. In such a way we obtain a sequence of models which reflects 
a process of gaining information about a system. Every lattice of properties 
contains all previously built up lattices as sublattices and we can find 
remainders of  every state of a system in all previously obtained lattices at 
least in the form of the trivial property I which is always actual. On the 
other hand each set of properties which was recognized as a state of a 
system after asking some questions can give rise to a not necessarily single 
state in the more detailed model built up after asking more questions. Let 
us illustrate these ideas in a simple case of  a system consisting of a large 
number of  molecules H20. Each stage of  investigations will be indexed by 
the number of "generating questions," i.e. questions which, together with 
an "inverse" operation (forming from a question a a question od by 
interchanging outcomes "yes" and "no")  and the "product"  operation, are 
sufficient to obtain the whole lattice of properties. For the sake of simplicity 
we will not list those product  questions which will be equivalent to questions 
which are already listed. 

n = l  

Questions: ll = "Does the system exist?", 12---"Do we have anything 
to study?", I~, l~. 

Relations on questions: l~ ~ l~ < 11 ~ 12. 
Properties: I ~ 11, /2, 0 ~ l~, I~. 
Relations on properties: 0 < L 

n = 2  

New questions: al  = "Does the system has structure of crystal?", og 2 = 

"Does the system has definite shape?", a~, a~. 
Relations on questions: l~ ~ l'~< a~ = a~, al  ~ a2<  11 --~ 12. 
Properties: I ;  a ~ al,  a2; a' ~ a~, a~; 0. 
Relations on properties: 0 <  a, a'<I. 

n = 3  

New questions:/3 = "Does the system has definite volume?",/3 ' ,  ozl �9 
(ai"/3') ' ;  i = 1, 2. 

Relations on questions: II < ai </3, ( a i . / 3 ' ) ' <  li; l~ < a'i �9 fl < al , /3 < li; II < 
f l '< (a~ . /3 ' ) ' ,  c~< 1~; i = 1 , 2  

Properties: L a, a', b~/3, b'~/3', a' ^b~a~ "/3, av  b'~(ai.  [3')', O. 
Relations on properties: 0 < a < b ,  a v  b'<I;  0 < a ' ^  b<a',  b < I ;  0 < b ' <  

a', a v b ' < I .  
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n ~ 3  

The Hasse diagrams of lattices of properties for n = 1, 2, 3 are drawn 
on the Figure 1. 

Let us assume that our samples of water are investigated under normal 
pressure but some of them were prepared to have temperature -10~ some 
+10~ and some +l l0~  Then, for n = 3, we observe that the whole set of  
samples splits itself into three subsets for which the following properties 
are actual: for t = -10~ properties a, b, a v b', I ;  for t = +10~ properties 
a' ,  b, a ' ^  b , / ,  and for t =+110~ properties b', a ' ,  a v b', L We can easily 
recognize these three sets of  properties as representing solid, liquid, and 
gaseous states of  water, respectively. I f  we stop investigations on the stage 
n = 2 then we can recognize only a solid and a fluid state represented by 
sets {a, I} and {a', I}, respectively. A fluid state gives rise to a liquid and 
to a gas when we add new question fl, while a solid state remains unsplit. 

3. T O P O L O G Y  

Since we shall treat a set of all states of a physical system as a limit 
of an inverse system of topological spaces we remind the necessary notions. 
A reader is referred to the book of Engelking (1977) for a more detailed 
exposition of this useful notion. An inverse system of topological spaces is 
a family S -- {Xo~ f~,  ~}, where Z is a set directed by a relation -<, X~ is a 
topological space for any o- ~ E, and for any p -< trf~o is a continuous mapping 
of X~ into Xp such that the following conditions are satisfied: 

fof~ = f :  for any r _< p ~ tr 

f~ = idx= for any o- e Z 

An element {x~} of the Cartesian product I]~z~ X~ is called a thread of S 
i f f~(x~)  = xp for any p -< o-. A limit of  the inverse system S is the subspace 
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of  1 - [ ~  X~ consisting of  all threads of  S. It  is usually denoted by lim_m S. I f  
in the directed set E there exists an element O'o such that tr_< cr o for every 
o" ~ ~ then the limit of  S is homeomorphic  to the space X~ o. Compactness  
of  topological spaces is hereditary under forming limits of  inverse systems, 
precisely the limit of  an inverse system of  nonempty compact  spaces is 
compact  and nonempty.  

The very construction of sequence of  more and more detailed models 
which was presented in the previous section provides a possibility for using 
a limit of  an inverse system for describing the set of  all states despite of  
the fact that we cannot usually get the whole information about  it in any 
finite sequence of experiments. The directed set E which is needed consists 
of  natural numbers which were used for indexing models together with the 
ordinary partial order. I f  S,, and Sn are sets of  states obtained on the ruth 
and nth stage of  investigations and if a state p ~ S, consists of  properties 
al . . . .  , ak, then we define the image of  p by the mapping f ~  as a set 
f ~ ( p )  =p  c~ 5fro, i.e., f ~ ( p )  is a state of  a physical system which consists of  
these properties from the set p which were already recognized on the mth 
stage of investigations. Obviously f~ =ids .  for any n and f '~f~ =f~ for any 
l-< m --- n so the only thing which remains to fulfill the requirement of  a 
definition of  an inverse system is continuity of  all mappings f ~ .  But let us 
notice that any set of  states S~ which is obtained after performing finite 
sequence of  experiments is by the very construction finite so if we equip 
S, with any Hausdort t  (or even TI) topology it becomes a discrete topologi- 
cal space for which all mappings f ~  are continuous. The assumption that 
any physically meaningful topology on the set of  states should be Hausdorff  
is not a strong one and it can be often found in the literature (Cole, 1968; 
Gunson,  1967). 

Let us assume for a moment  that a given physical system is of  such a 
nature that all its properties can be recognized in a finite sequence of 
experiments. In such a situation in the set of  numbers ~ used for indexing 
models there exists the greatest number  no and by the already mentioned 
theorem the limit li___m_m S of  an inverse system of  topological spaces S = 
{S~,f~, ~} is homeomorphic  to the space S~ o whose elements represent all 
possible states of  a physical system. For any two numbers m, n ~E  iff 
m --- n-< no then the partial model S, approximates  S,~ better than S,,. Of  
course the situation when Y~ is finite is exceptional but we see from it that 
even for infinite ~ elements of  a limit of  the inverse system of  topological 
spaces S = { S ~ , f ~ , E }  represent states of  a physical system which could 
have been achieved experimentally if we were able to perform infinite 
sequence of experiments. Therefore we can call any element p ~  S, an 
"experimental"  or ~ state while any element of  li_m_m S should 
be called an "abstract"  or "theoretical" or "ontological"  state of  a physical 
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system. We are thus led to a form of p la tonic  dua l i sm consist ing of an ideal 

world of theoretical  states in contrast  to an  empirical  world of real states. 

Since all sets S, of  exper imenta l  states are finite they are compact  in any 
Hausdor t t  topology (which is as well in this case discrete). The set of  all 
theoretical  states l im S is therefore compact  a l though its topology, when  Z 
is not  finite, need not  be discrete any more. We find here Brouwer 's  idea 

of the esprit de f inesse  (which confines itself to finite objects "cons t ruc ted"  
by l imited means)  as al ien to the esprit de gdom~trie (which describes 

theoretical  or "po ten t i a l "  s i tuat ion and  the " t rue"  na ture  of the system). 
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